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The discovery that electron holes (radical cations) migrate long
distances in DNA has fostered enormous interest in the mechanism
of this processes, due in large part to its apparent similarity with
oxidative damage in cells.1,2 Several models have been proposed
to account for the extensive experimental observations in this area.
Currently, it is generally accepted that holes migrate long distances
through duplex DNA by a series of short hops pausing briefly at
guanine-containing sites of relatively low oxidation potential (often
GG steps) where they may react irreversibly with H2O or O2.3,4

The two guanines of the GG steps are not equally reactive. A
hallmark of the one-electron oxidation of duplex DNA is that the
5′-guanine of GG steps is typically more reactive than the 3′-G.5-7

This finding has been analyzed computationally. Both ab initio and
NDDO-G gas-phase model calculations have been interpreted to
indicate that electronic effects make the 5′-G of GG steps more
easily oxidizable than the 3′-guanine.8,9 It was also suggested that
the 5′-G radical cation is stabilized by electronic overlap with the
N7 nitrogen atom and O6 oxygen atom of the 3′-G10 and that the
reactivity pattern seen in GG steps is controlled by the identity of
adjacent nucleobases.11

To assess the influence of electronic structure on the sequence
selectivity of guanine oxidation in DNA, we calculated the
ionization potentials (IP, evaluated as the difference between the
total energies of the neutral and ionized sequences) and the hole
spatial distributions of sequences d(5′-XGGX-3′)/d(3′-YCCY-5′),
where X ) A,T,U, and Y is the complementary base. These
calculations are quantitatively reliable,12 and the calculated and
experimentally measured IPs of the individual nucleobases agree.13

The calculated IPs for these gas-phase, base-paired quartets14 are
4.02, 4.04, and 4.08 eV for X) A, T, and U, respectively, which
is in the expected order. Most significantly, the hole distribution
(Table 1) is remarkably insensitive to X. The hole is similarly
delocalized over the XGGX sequences with only a modest
preference for the 5′-G. This finding suggests that electronic factors
may not be the primary determinant of the reaction selectivity for
GG steps in these cases.

We also carried out detailed classical molecular dynamics (MD)
simulations on the B-DNA oligomers d(5′-GXXGGXXG-3′)/d(3′-
GYYGGYYG-5′) that suggest there is an important steric contribu-
tion to the preference for reaction at the 5′-G in the GG doublets.
These simulations15 reveal that stacking in these instances is
essentially independent of sequence (consistent with X-ray data for
DNA and RNA13), and yield pair-distribution functions,g(r; C8),
between the reactive sites - C8 of the 5′- and 3′-guanines and the
oxygen atoms of neighboring water molecules. These water
molecules lie in a cone-shaped region (half opening angle 30°) with
the apex at the guanine C8 atom and extending to the 3′-side
(reaction at the 5′-side is blocked sterically by the adjacent base13).

This cone is oriented in the “tetrahedral bond direction”, that is,
that defined by the developing sp3 carbon-oxygen bonding orbital.12

Time-averaged calculatedg(r; C8) show (Figure 1) that the
probability of finding water molecules in the reactive conical sector
of the 5′-G is essentially sequence invariant. In contrast, theg(r;
C8) calculated for the 3′-G exhibits a strong sequence dependence
with the peak of the distribution highest for the 5′-AGGA-3′
sequence and lowest for 5′-TGGT-3′, with the 5′-UGGU-3′
intermediate between the two. The sequence dependence of the
water access probability to the C8 site is due to steric hindrance
by the thymine methyl group, which, of course, is absent in uracil.13

To assess the validity of this prediction, we undertook a
systematic experimental investigation of the one-electron oxidation
of DNA oligomers designed specifically to separate steric from
electronic effects in the control of reaction selectivity at GG steps.
The series of DNA oligomers (Figure 2) was prepared to resolve
the affect of neighboring bases on the relative reactivity of the two
guanines in GG steps into electronic and steric components. Each
duplex contains a covalently linked anthraquinone photosensitizer
(AQ) at a 5′-end and is radiolabeled with32P for PAGE analysis
and quantitative phosphorimagery. Each duplex also contains a
region of regularly repeating nucleobases. For example, in DNA-
(1) this region contains the series (5′-AGG-3′)6, which generates a
string of six AGGA sequences. Similarly, DNA(2) contains six
consecutive TGGT sequences and DNA(3) has successive UGGU
sequences. These three DNA duplex oligomers have the expected
melting behavior and show circular dichroism spectra characteristic
of B-form DNA.

The DNA duplex oligomers were irradiated16 and then treated
with piperidine, which causes strand cleavage at the site of an
oxidized guanine.1 The samples were analyzed by gel electrophore-
sis, and the amount of strand cleavage was quantified by phos-
phorimagery. A typical gel and the phosphorimagery data are shown
in Figure 3. As expected for these three DNA duplexes, the amount
of strand cleavage at each of the GG steps is the same within
experimental error because the rate of hole hopping (khop) is
significantly greater than the rate of the irreversible trapping reaction
(ktrap), and thus the distribution of holes among the reaction sites is
controlled thermodynamically.3
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Table 1. Hole Occupation Fractions and the Ratio of the Hole
Density on 5′ and 3′ Guanines in GG Steps from Gas-Phase
Calculations on Duplex B-DNA Quartets: 5′-XGGX-3′/3′-YCCY-5′a

X ) A X ) T X ) U

5′-X 0.02 0.01 0.01
G 0.50 0.53 0.51
G 0.43 0.45 0.44
3′-X 0.04 0.01 0.01
5′-G/3′-G 1.16 1.18 1.16

a The hole occupations on the complementary strand YCCY and on the
sugar-phosphate backbone are negligible.
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For DNA(1) in which the GG steps are in the AGGA sequence,
the ratio of 5′- to 3′-reactivity is 1.8( 0.1, and for DNA(2), which
contains the sequence TGGT, this ratio is 6.1( 0.3. Thus, as
previously reported,6,17 the relative reactivity of the 3′-G of GG
steps decreases ca. 3-fold when embedded in a TGGT sequence
compared with an AGGA sequence. Critically, the experiments
reveal that for the U-containing sequence, DNA(3), the ratio of 5′-
to 3′-reactivity of the GG steps is 3.4( 0.2, which is intermediate
between the TGGT and AGGA sequences. The observed pattern
of reaction selectivity for the XGGX sequences correlates well with
our finding that the water access distribution functions are sequence
invariant for the 5′-G, but differ for the 3′-G. Clearly, electronic
factors assessed by ionization energies or the hole distributions,
which are essentially sequence invariant (Table 1), do not appear
to be the primary factor determining relative reactivity of guanines
in GG steps. Instead, the accessibility of H2O to the reaction site
determined by steric blocking by the thymine methyl group plays
the dominant role for these sequences.18

In earlier work12 we showed that reaction of H2O with a guanine
radical cation in an AGGA sequence has two enabling features:

activation by association with a Na+ ion and product stabilization
by a nearby phosphate group. The results reported here reveal a
third important featuresaccessibility of reactants (H2O) to the
reaction site, which is sequence-dependent and governed by steric
effects. These finding may have implications to oxidative damage
in cells where DNA is in a complex molecular environment.
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Figure 1. Pair distribution functions,g(r; C8), between the reactive sitess
the C8 carbon atom of the 5′- and 3′-guaninessand the oxygen atoms of
neighboring water molecules. Results shown for 3 sequences.

Figure 2. Structures of DNA oligomers used in this work. The/ denotes
the position of32P radioactive label.

Figure 3. Autoradiogram of PAGE gel following the irradiation of DNA-
(1)-DNA(3). The graph in the right side shows the ratio of damage for
5′-G and 3′-G for the four GG steps in the middle, which directly shows
the difference in reactivity at the 3′-G position for the three sequences used.
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